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Piston theory applied to strong shocks and unsteady flow 
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(Received 7 January 1960) 

The utility of piston theory as a means of solving isentropic two-dimensional 
aerodynamic problems has been aptly demonstrated by many writers in recent 
years. The present treatment removes the restriction of isentropic flows, extending 
the applicability of piston theory to flows with strong shocks. Sample calculations 
for a thin biconvex airfoil are carried out in which the local flow is assumed to be 
isentropic and non-isentropic. Comparison of the result is made with that of the 
shock expansion theory of Cole, Gazley & Williams (1956). 

1. Introduction 
Several papers have been published in recent years which deal with various 

problems of isentropic shock-free flows; for example, Lighthill (1953)) Ashley & 
Zartarian (1956), Landahl(1957), and Chawla (1958). The condition of isentropy 
in essence defines a reasonable upper limit for the piston speed of the order of the 
speed of sound, i.e. w/a, Q 1, where w is the local velocity normal to the main 
undisturbed flow and a, is the undisturbed speed of sound. However, according 
to Hayes (1947, 1957) this is a restriction which does not seem always justifiable. 

In  the development of the piston analogy there is no effect of the piston speed 
which limits its validity. The local Mach number, M ,  must be large, and since 
Hayes (1947) shows that M = 0(P1), where 6 is local slope, it is only necessary 
that 6 be sufficiently small. In  general, the error in pressure coefficients or other 
parameters of interest are of the order b2 for all Mach numbers, as pointed out by 
Van Dyke (1954). This again requires that the local slopes be small in order to 
limit errors in the pressure coefficient, but does not necessarily limit the piston 
speed, K ,  E Ma&. 

Assuming that the piston theory is valid for all speeds including those corre- 
sponding with strong shock flow, where K ,  > 1, then there is an extension of the 
works on piston theory to flows with strong steady and unsteady shocks. Hence, 
we seek a relationship between the local piston speed, w, and the local pressure, 
p, for strong shock flows, since the corresponding pressure relationship for 
isentropic flows is well known. 

- -~ 

2. The strong-shock pressure function 
Previously, Raymond & Williams (1957) found an empirical relationship for 

the reduced pressure coefficients, C,/Sz, based on the hypersonic small-disturbance 
theory of Van Dyke (1954) or the piston theory of Cole et al. (1956). It is 

cp,+cpe = y + l ,  (1) 
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where the coefficients on the left-hand side refer to compression and expansion 
respectively. The isentropic expression for the reduced expansion pressure 

For K,  2 1.4, this comes within 4 yo of the value given by 

Using equation ( 2  b)  for the sake of simplicity, equation ( 1 )  becomes 

- 2 cpc = y+l+-. 
YK2, 

(3) 

Hypersonic flows over small local slopes are typified by the head shock lying 
close to and almost parallel to the body. In  the case of a two-dimensional body, a 
component of flow, u,, is generated normal to the local surface and is related to 
the shock-induced normal flow component us, by 

For 0, = O(6) < 1, we find, from equation (4)) that us r u,, and u, r U,S from 
the usual small-angle approximations applied to the body surface. 

We now proceed to some of the inferences that can be made with the use of the 
small-angle approximations. Recalling the previous remarks on the limitation of 
piston speed, w < a,, we seek now the relationship between w and p .  

From equation (3) we get 
fi = YK2, - (y+l)+2,  
Pm 2 

but we see that K,  = U,8/a, r wla, within the small-angle approximation, 
hence 

Equation ( 5 b )  was predicted theoretically by the piston analysis of Cole et al., 
except that they were only able to show that the second term on the right-hand 
side was O( 1). 

3. Application to a biconvex airfoil 
It is relatively simple to calculate wla, as a function of the time (or the 

x-co-ordinate) and then use the appropriate pistonequation forpressure coefficient 
depending upon whether the flow is isentropic or not. The following develop- 
ments were considered by Lighthill (1953), and to a large extent we shall make use 
of his nomenclature. 

Let y be the co-ordinate normal to the body and positive away from the centre 
line, then 

y = Y,(x) f K(x, t )  on the 
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where5 is the equationof the profile shape and yi is the unsteady y-displacement. 
Differentiating equation (6), we get 

w = w,(x) k wi(x, t )  on the 

In  general, for one-dimensional flow 

ay ay 
at m a x ?  w = - - + u  - 

(7) 

so that if we take a thin biconvex airfoil as an example, we get 

= 27[x - (x2 /C) ] ,  (9) 

W ,  = 2Um7[1 - (2x/C)]. (10) 

Let yi = a($) ( x  -xo),  (11) 

wi = &(x-zo)+Uma. (1la) 

where 7 = t / c  is the thickness-to-chord ratio. Then from equations (8) and (9), 

then from equation (8) 

Let a = a. eiut, then equation (1 1 a )  becomes 

wi = a. eiwt{(iw(x - xo) + U,}, 

and adding equations (10) and (12) results in 

Taking the real parts, we obtain 

The last equation is not in its most convenient form from the conventional point 
of view. Letting k = wc/2Uco, equation (14) becomes 

(15 )  
C 

W 

a m  

where t = x/Um. This is essentially a statement of Hayes’s piston transformation. 

4. Force and moment calculation 

coeficients : 
For the biconvex airfoil thus selected, we calculate the force and moment 

(16)  

and - 

where pl  and pu are the local pressures on the lower and supper surfaces, 
respectively. 

The pressure relationship for isentropic flow is 

y - 1 w 2YlY--1 -=(l+--) P . 
PCU 2 a m  
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Now it is clear that some rules must be formulated for the use of equations (5b)  
and (18) in terms of piston Mach number. To help resolve this question in the 
range of piston Mach numbers 1.0 6 wla, < 1.4, the compression-pressure ratio 
was calculated based on both ( 5 b )  (valid for wla, 2 1.4 in the present approxima- 
tion) and the corresponding equation valid in the range 1.0 < w/a, < 1.4, 

(Equation (19) is based on equations (1) and (2a).) Both pressure ratios were 
compared with the isentropic value given by equation (18) for w/a, = 1.0. It was 
found that equations (5 b) and (1 9) result in pressure ratios which are 3 yo high and 
3 % low, respectively, compared to equation (18). Consequently, since there 
appears to be no serious error in using equation ( 5 b )  over equation (19)) the 
former was used because of simplicity in the example which follows. Clearly, some 
idealization is embraced here since aerodynamic flows do not transform abruptly 
from isentropic t o  strong shock flows as the above usage implies. 

Suggested rules based on piston Mach numbers are 

Tnentropic flow 

w - 2  - = o  P - < -  
a, y-1’ Pa 
-2 w - . 

I < - < 1, Equation (18) 
7-1 a m  

W 
- > 1, Equation (5b) Strong-shock flow 
a, 

5. Results 
The biconvex airfoil of equation (9) with r = 0.025, a. = 0.1047, M, = 10, and 

zo/c = 0.50 was selected as an example calculation. The results are: 

le C N  C M  
0 0.0521 0.00438 
0.01 0.0521 0.00438 
0.10 0.0516 0.00445 

0.0339 0.00996 
TI2 0.0252 0.01661 
7r 0.0699 0-00749 

4 4  

It will be noted that M,T and M,a, appear only in combination in equation (15); 
hence the calculations apply over a wide range of M,, r and ao. 

A point of comparison was made for C, a t  k = 0, with the results of the shock- 
expansion theory by Cole et al., and the present value was found to be high by 
about 4.5 %. 
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